123 research outputs found

    Assessment of rfi measurements for lofar

    Get PDF
    In the North-Western part of Europe, ASTRON is building the world-largest largest low-frequency radio telescope. The telescope is based on phased array principles and is known as the LOw Frequency ARray (LOFAR). LOFAR is optimized for detecting astronomical signals in the 30-80 MHz and 120-240 MHz frequency windows. Since this part of the spectrum is in extensive use by others, special care must be taken in the selection of possible out-station sites for LOFAR. RFI measurements were made to be sure that the radio spectrum at the potential out-station locations is suitable for LOFAR operations. An assessment procedure is presented here and specific issues are discussed, such as the impact of Digital Video Broadcast, and wind turbines. The results of\ud the RFI observations has generated a list of specifications for (international) LOFAR out-stations

    OLFAR a radio telescope based on nano satellites in moon orbit

    Get PDF
    It seems very likely that missions with nano-satellites in professional scientific or commercial applications will not be single-satellite missions. Well structured formations or less structured swarms of nano-satellites will be able to perform tasks that cannot be done in the “traditional” way. The Dutch space-born radio telescope project OLFAR, the Orbiting Low Frequency Array, is a good example of a typical “swarm task”. The OLFAR radio telescope will be composed of an antenna array based on nano-satellites orbiting the moon to shield the receiving nodes from terrestrial interference. The array will receive frequencies in a band from around 30 kHz to 30 MHz. This frequency band is scientifically very interesting, since it will be able to detect signals originating from the yet unseen “Dark Ages” ranging from the Big Bang until around 400 million year after. Another science driver is the LF activity from (exo) planets. In this paper the design parameters for the satellites and the swarm will be given and status of the OLFAR project will be reported. Details will be given about the antenna system, the LF-receiver and the signals that are expecte

    The coexistence of cognitive radio and radio astronomy

    Get PDF
    An increase of the efficiency of spectrum usage requires the development of new communication techniques. Cognitive radio may be one of those new technique, which uses unoccupied frequency bands for communications. This will lead to more power in the bands and therefore an increasing level of Radio Frequency Interference (RFI), which would cause loss of operation particularly for passive users of the spectrum, such as radio astronomy. This paper will address this issue and will present calculations indicating that the impact of cognitive radio on radio astronomy observations is considerable. The signal levels resulting from cognitive radio systems indicate that spectral bands used for cognitive radio applications cannot be used for radio astronomical research

    On the origin of satellite swarms

    Get PDF
    For a species to develop in nature, two basically two things are needed: an enabling technology and a "niche". In spacecraft design the story is basically the same. Both a suitable technology and a niche application need to be there before a new generation of spacecraft can be developed. Last century two technologies have emerged that had and still have a huge impact on the development of technical systems: Micro-Electronics (ME) and Micro-Systems Technology (MST). Both are ruled by Moore's Law that indicates that considerable technology updates appear at the pace of years or even months instead of decades. Systems that need a development time of more than a few years will inevitably be based on "out-dated" and thereby difficult to maintain and repair technology unless during the development constant redesigns are made. This makes the development of the system at least very expensive. Although expenses do not seem to be a frequent show stopper in the design of spacecraft, it is still very interesting to investigate what system architectures might evolve when the specific properties of the new technologies ME and MST are fully exploited. ME presently offers more than 2 billion transistors on a chip and MST offers mechanical systems like resonators, mechanical switches, propulsions units, gyroscopes and many other sensors that _t in a volume of a few square millimeters to a few centimeters. So it is possible to fit a lot of signal processing power together with the necessary sensors and actuators in a volume that is really very small compared to any know space system. Of course state-of-the art spacecraft will immediately outperform these units in all aspects apart from cost and quantity. For the _rst time it makes sense to envisage the operation of formations of tens to hundreds of satellites that are cheap because they are based on standard commercial COTS technology and system designs. These satellite swarms will not be the systems that replace all other space systems. But, like in nature, there is a niche where swarms are the optimal solution. It's time to start occupying this niche. Typical properties of a swarm in nature are robustness, redundancy, large area coverage, the lack a hierarchical command structure, limited processing power per unit and self-organization ("swarm-intelligence"). This paper discusses the technological trends that lead to satellite swarms, where they can go and what new science they can create

    On the design of a real-time volume rendering engine

    Get PDF
    An architecture for a Real-Time Volume Rendering Engine (RT-VRE) is given, capable of computing 750 × 750 × 512 samples from a 3D dataset at a rate of 25 images per second. The RT-VRE uses for this purpose 64 dedicated rendering chips, cooperating with 16 RISC-processors. A plane interpolator circuit and a composition circuit, both capable to operate at very high speeds, have been designed for a 1.6 micron VLSI process. Both the interpolator and composition circuit are back from production. They have been tested and both complied with our specifications

    Daris, a low-frequency distributed aperture array for radio astronomy in space

    Get PDF
    DARIS (Distributed Aperture Array for Radio Astronomy in Space) is a radio astronomy space mission concept aimed at observing the low-frequency radio sky in the range 1-10 MHz. Because of the Earth's ionospheric disturbances and opaqueness, this frequency range can only be observed from space. The astronomical science cases include sensitive extragalactic surveys, radio transients such as Jupiter-like burst and Crab-like pulses, and coronal mass ejection tracking. The focus of the DARIS concept study is on feasibility aspects of a distributed aperture synthesis array in space, consisting of small satellite nodes and a mother-ship. The study selected suitable science cases, antenna concepts, communications, signal processing, orbital design, and mission analysis. With current-day technologies a satellite cluster can be built consisting of at least eight satellite nodes and a mother-ship, which could be launched with a Soyuz rocket from Kourou. Such a satellite cluster would open up the last unexplored frequency range for astronomy

    A novel astronomical application for formation flying small satellites

    Get PDF
    OLFAR, Orbiting Low Frequency Antennas for Radio Astronomy, will be a space mission to observe the universe frequencies below 30 MHz, as it was never done before with an orbiting telescope. Because of the ionospheric scintillations below 30 MHz and the opaqueness of the ionosphere below 15 MHz, a space mission is the only opportunity for this as yet unexplored frequency range in radio astronomy. The frequency band is scientifically very interesting for exploring the early cosmos at high hydrogen redshifts, the so-called dark-ages and the epoch of reionization, the discovery of planetary and solar bursts in other solar systems, for obtaining a tomographic view of space weather, ultra-high energy cosmic rays and for many other astronomical areas of interest. Because of the low observing frequency the aperture size of the instrument must be in the order of 100 km. This requires a distributed space mission which is proposed to be implemented using formation flying of small satellites. The individual satellites are broken down in five major subsystems: the spacecraft bus, the antenna design, the frontend, backend and data transport. One of the largest challenges is the inter-satellite communication. In this paper the concept and design considerations of OLFAR are presented

    An extensive and autonomous deep space navigation system using radio pulsars

    Get PDF
    Interstellar navigation poses significant challenges in all aspects of a spacecraft. One of them is reliable, low-cost, real-time navigation, especially when there is a considerable distance between Earth and the spacecraft in question. In this paper, a complete system for navigation using pulsar radio emissions is described and analysed. The system uses a pulsar‟s emissions in the radio spectrum to create a novel system capable of fully autonomous navigation. The system is roughly divided into two parts, the front - end and the back - end, as well as their subdivisions. The front - end performs initial signal reception and pre-processing. It applies time-based coherent de-dispersion to allow for low-power on-board processing, and uses a very wide bandwidth to limit the required antenna size. As a result, the electronics required performing the processing is complex, but the system is well limited in both size and power consumption
    corecore